28,108 research outputs found

    Molecular mechanisms in haematological malignancies

    Get PDF
    Haematopoiesis requires the constant production of large numbers of peripheral blood cells. This process is under tight control of transcription factor networks as well as cytokines, growth factors and hormones. We will review the importance of transcription factors in programming the haematopoietic lineage commitment and the role of the microenvironment and the corresponding cellular sensitivity to ensure production of mature functional cells in response to the physiological demand. Understanding the molecular mechanism of this complex process gives the opportunity to identify the underlying molecular deregulation in haematopoietic malignancies. The different levels of deregulation include hyperproliferation, block in differentiation and sensitivity to growth factors. In this review, leukaemic transformation is selected to give evidence of cell signalling deregulation. The clinical implications will be reviewed in the context of the potential opportunities in the future to identify specific therapeutic patient groups that can be defined using prognostic and predictive biomarkers.peer-reviewe

    Dynamic mechanistic modelling and controlled growth factor delivery for optimization of scalable haematopoietic cell processing

    Get PDF
    Cell culture is a complex and dynamic process. Efficient optimisation of economic production, process risk and product quality requires an integrated approach comprising both experimentation and modelling; dynamic mechanistic models offer the benefits of a mechanistic understanding of processes and can potentially predict counter-intuitive outcomes over extended time periods. Further, cost and control optimisation also requires appropriately scaleable production systems with discrete control of potent and costly signalling factors. Haematopoietic cultures are ideal systems to develop such approaches; suspension culture ensures compatibility with scaleable well controlled platforms and high frequency cell sampling for high resolution time series. Haematopoietic cultures also have high clinical potential from haematopoietic stem cell transplants to manufactured red cells, platelets or immunotherapies. Dynamic mechanistic models are underutilised in the bioprocess community partly due to the skills barrier to entry. A multidisciplinary collaboration has designed a software interface for the description, testing and manipulation of hypothetical mechanistic dynamic models. The approach aims for parsimonious, and hence testable, models built on the dominant phenomena involved in cell culture (e.g. substrate-dependent growth, cell death). We have demonstrated the application of the software in the context of a hypothesis-driven programme of research to determine the productivity limits of human erythroblast culture from cord blood CD34+ cells; the software enabled a team of biologists to develop a low parameter predictive deterministic model of the effects of medium supply and cell density control strategies on erythroblast growth that could optimise cells/$ production for any given facility time and medium volume cost. Relatively small shifts in strategy had greater than 3-fold impact on cost and substantially changed the impact of imprecision in timing of process operations. We have further demonstrated how the software and models are complementary to a novel immobilised growth factor technology for scaleable haematopoietic expansion. Immobilisation of multiple haematopoietic factors on magnetic beads increases the dimensions of control in the culture system and decouples growth factor dynamics from basic medium supply. Further, immobilised factors are shown to be orders of magnitude more potent than their soluble counterparts and remain functional under mechanically mixed, and hence scalable, conditions. Such increased control opportunities and system intensification will increase the potential benefit and power of mechanistic modelling approaches in manufacturing of cell based therapies

    Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium

    Get PDF
    Embryologic and genetic evidence suggest a common origin of haematopoietic and endothelial lineages. In the murine embryo, recent studies indicate the presence of haemogenic endothelium and of a common haemato-endothelial precursor, the haemangioblast. Conversely, so far, little evidence supports the presence of haemogenic endothelium and haemangioblasts in later stages of development. Our studies indicate that human cord blood haematopoietic progenitors (CD34+45+144-), triggered by murine hepatocyte conditioned medium, differentiate into adherent proliferating endothelial precursors (CD144+CD105+CD146+CD31+CD45-) capable of functioning as haemogenic endothelium. These cells, proven to give rise to functional vasculature in vivo, if further instructed by haematopoietic growth factors, first switch to transitional CD144+45+ cells and then to haematopoietic cells. These results highlight the plasticity of haemato-endhothelial precursors in human post-natal life. Furthermore, these studies may provide highly enriched populations of human post-fetal haemogenic endothelium, paving the way for innovative projects at a basic and possibly clinical level. \uc2\ua9 2012 Pelosi et al

    Bone marrow mononuclear cells and acute myocardial infarction

    Get PDF
    PMCID: PMC3340546This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Key environmental stress biomarker candidates for the optimisation of chemotherapy treatment of leukaemia

    Get PDF
    The impact of fluctuations of environmental parameters such as oxygen and starvation on the evolution of leukaemia is analysed in the current review. These fluctuations may occur within a specific patient (in different organs) or across patients (individual cases of hypoglycaemia and hyperglycaemia). They can be experienced as stress stimuli by the cancerous population, leading to an alteration of cellular growth kinetics, metabolism and further resistance to chemotherapy. Therefore, it is of high importance to elucidate key mechanisms that affect the evolution of leukaemia under stress. Potential stress response mechanisms are discussed in this review. Moreover, appropriate cell biomarker candidates related to the environmental stress response and/or further resistance to chemotherapy are proposed. Quantification of these biomarkers can enable the combination of macroscopic kinetics with microscopic information, which is specific to individual patients and leads to the construction of detailed mathematical models for the optimisation of chemotherapy. Due to their nature, these models will be more accurate and precise (in comparison to available macroscopic/black box models) in the prediction of responses of individual patients to treatment, as they will incorporate microscopic genetic and/or metabolic information which is patient-specific.peer-reviewe

    Barriers to infection of human cells by feline leukemia virus: insights into resistance to zoonosis

    Get PDF
    The human genome displays a rich fossil record of past gamma-retrovirus infections, yet no current epidemic is evident, despite environmental exposure to viruses that infect human cells in vitro. Feline leukemia viruses (FeLVs) rank high on this list, but domestic or workplace exposure has not been associated with detectable serological responses. Non-specific inactivation of gamma-retroviruses by serum factors appears insufficient to explain these observations. To investigate further we explored the susceptibility of primary and established human cell lines to FeLV-B, the most likely zoonotic variant. Fully permissive infection was common in cancer-derived cell lines, but was also a feature of non-transformed keratinocytes and lung fibroblasts. Cells of haematopoietic origin were less generally permissive and formed discrete groups on the basis of high or low intracellular protein expression and virion release. Potent repression was observed in primary human blood mononuclear cells and a subset of leukemia cell lines. However, the early steps of reverse transcription and integration appear to be unimpaired in non-permissive cells. FeLV-B was subject to G->A hypermutation with a predominant APOBEC3G signature in partially permissive cells but was not mutated in permissive cells or in non-permissive cells that block secondary viral spread. Distinct cellular barriers that protect primary human blood cells are likely to be important in protection against zoonotic infection with FeLV

    The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Get PDF
    Background: Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL) where GATA1FL mutations are an essential driver for disease pathogenesis. <p/>Methods: Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. <p/>Results: We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. <p/>Conclusions: These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL
    corecore